翻訳と辞書 |
Gaussian isoperimetric inequality : ウィキペディア英語版 | Gaussian isoperimetric inequality In mathematics, the Gaussian isoperimetric inequality, proved by Boris Tsirelson and Vladimir Sudakov and independently by Christer Borell, states that among all sets of given Gaussian measure in the ''n''-dimensional Euclidean space, half-spaces have the minimal Gaussian boundary measure. == Mathematical formulation == Let be a measurable subset of endowed with the Gaussian measure γ ''n''. Denote by : the ε-extension of ''A''. Then the ''Gaussian isoperimetric inequality'' states that : where :
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Gaussian isoperimetric inequality」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|